
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE 

Anna Porazilová 

THE SHORTEST PATH 

Abstract 

This paper describes the shortest path problem, its classification and the 
best known algorithms. A new algorithm for the shortest path problem 
is introduced and its acceleration suggested. 
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1 Introduction 
Shortest path problems are among the fundamental problems studied in 

computational geometry and other areas including graph algorithms, 
geographical information systems (GIS), network optimization and robotics. 
The shortest path problem has several versions.  

 
The geodesic shortest path problem: Given two points s and t on the 

surface of a polyhedron, find the shortest path on the surface from s to t. 
The other problem is called the Euclidean shortest path problem and is 
looking for the shortest path among the obstacles in 3D space. Whereas 
finding the Euclidean shortest path is NP-hard, the geodesic shortest path 
may be found in polynomial time. This article will concentrate on the 
geodesic shortest path problem. 

 
The shortest path problem can be next categorized by the distance 

measure used (Euclidean, weighted), purpose (single source shortest path 
problem: the shortest path between two points or all pairs shortest path 
problem: the shortest paths between one point and all triangle vertices) and 
computation (exactly, approximative). Let ε be a real number in (0,1), the 
path is called an (1+ε)- approximation of the exactly shortest path between 
two points if its cost is at most 1+ε times the cost of the shortest path. In 
this paper the relative error R of the approximative shortest path p is the 
ratio between the shortest distance of the path from the final point and the 

length of the path: ( , )
lenght( )
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p
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Table 1 shows the best previous results of geodesic shortest path 

problems. Most of the algorithms use front propagation or some other kind 
of Dijkstra’s-like algorithm. In 1987 Mitchell, Mount and Papadimitriou [5] 
introduced the Continuous Dijkstra technique, which simulates the 
continuous propagation of a wavefront of points equidistant from s across 
the surface, updating the wavefront at discrete events. It is obvious that the 
shortest path problem is an actual problem. 

 
Surface Approx. 

Ratio 
Time 

Complexity 
Reference 

Convex 1 O(n3 log n) Sharir and Schorr (1986) [7] 
Non-
convex 

1 O(n2 log n) Mitchell et al. (1987) [5] 

Non-
convex 

1 O(n2) Chen and Han (1996) [1] 

Non-
convex 

1 O(n log2 n) Kapoor (1999) [2] 

Convex 2 O(n) Hershberger and Suri (1995) 
Convex 1+ε O(n log(1/ε)+1/ε3) Agarwal et al. (1997) 
Convex 1+ε )1log( 35,1 εε

++
nnO  Har-Peled (1999) 

Convex 1+ε )1( 4εε
+

nO  Agarwal et al. (2002) 

Convex 1+ε 
))(( 25,1

25,1
−+ ε

ε
fnO  Chazelle et al. (2003) 

Non-
convex 

1+ε 
)log1loglog( 2

εεε
nnnnO +  Har-Peled (1999) 

Non-
convex 

7(1+ε) 
)log( 3

5
3
5

nnO  
Varadarajan and Agarwal (2000) 

Non-
convex 

15(1+ε) 
)log( 5

8
5
8

nnO  
Varadarajan and Agarwal (2000) 

Table 1. Overview of the best algorithms for the shortest path problem 

2 Computing shortest path by force of geodesic 
Geodesic curves generalize the concept of straight lines for smooth 

surfaces and play an important role in computational geometry and GIS 
systems. In 2.1 a geodesic and a discrete geodesic are described. The former 
algorithm for geodesic computation is introduced in 2.2 and adjusted to the 
shortest path computation in 2.3. In 2.4 the acceleration for shortest path 
computation is suggested. 
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2.1 Geodesic curves 
The well-known definition of geodesic is that a geodesic vanish the 
geodesic curvature. On the smooth surfaces a geodesic is the locally shortest 
curve.  

 
Proposition 1 The following properties are equivalent: 
1. γ is a geodesic. 
2. γ is the locally shortest curve. 
3. γ’’ is parallel to the surface normal. 
4. γ  has vanishing geodesic curvature κg = 0 

 
Item 2 tells that the shortest smooth curve joining two points s and t is a 

geodesic. The converse is not true in general. Nevertheless, the property of 
being shortest is desirable for curves in many applications and it is perhaps 
the characterization of geodesic curve more used in practice.  

 
When trying to generalize geodesics to discrete surfaces we encounter 

some obstacles. It is not possible in general to find a set of curves over 
discrete surfaces for which all items of proposition 1 are valid.  

 

Figure 1. Right and left angles (θr and θl resp.) in a curve. 
 
There are two different generalizations of geodesic curves to a discrete 

surface, both of them are called discrete geodesics [4]. The shortest 
geodesics are the locally shortest curves on the surface. The straightest 
geodesics satisfy the item 4 of proposition 1. The discrete geodesic 
curvature is a generalization of the geodesic curvature. Let θ be the sum of 
incident angles at a point P of a curve γ on the surface and θr and θl the 
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respective sum of right and left angles (see figure 1), the discrete geodesic 
curvature is defined as   

.
2

2)( ⎟
⎠
⎞

⎜
⎝
⎛ Θ−
Θ

Θ
= rg P πκ  

Choosing θl instead of θr changes the sign of κg. The straightest geodesic is 
a curve with zero discrete geodesic curvature at each point. In other words, 
straightest geodesics always have θr = θl at every point.  

2.2 Geodesic computation 
In 2004 in my diploma thesis [6] I implemented a geometrical algorithm for 
geodesic computation, which was described by Hotz and Hagen in 2000 [3]. 
The algorithm works on a triangulated surface, and given a start point and 
an initial direction computes the straightest geodesic. When encountering a 
vertex or an edge, the next part of discrete geodesic leads in such direction 
so that the left and right angles are equal (see fig. 2). 
 

 
Figure 2. Discrete geodesic computation 

2.3 Algorithm for the shortest path 
Ing. Zábranský adjusted the above-mentioned algorithm for the shortest 

path problem in his thesis in June 2005 [8]. He defined the shortest path 
problem as the boundary-value problem: Given two points s and t, find the 
discrete geodesic λ which satisfies: 
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λ(0) = s 
λ (length (λst)) = t 
λ’(0)= v 
length (λst) = min 
 
The problem consists in how to find the initially direction for path to 

pass through the finaly point.  The algorithm of Mr. Zábranský chooses the 
initial direction randomly and runs iteratively. After c. 500 iterations, it 
chooses the curve that approximates best the shortest path between s and t. 
The relative error is about 0.01 after 200 iterations.  

 
Figure 3. Demonstration of Zábranský’s algorithm for 15 iterations.  

3 My proposal for acceleration of the algorithm  
The algorithm of Mr. Zábranský does not work very effectively. I 

suggested and implemented a modified algorithm that works much more 
accurately and faster. In 3.1 the modified algorithm is introduced and in 3.2. 
the results are presented. 

3.1 The modified algorithm 
In contrast to Mr. Zábranský I choosed the initial vector v as the difference 
of the points t and s: v = t – s. In the next iterations the vector is changed by 
a small angle to the both sides from v. The shortest path is found sooner and 
is more accurately than in the algorithm of Mr. Zábranský. 
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Figure 4a. Demonstration of the modified algorithm for 10 iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4b. Demonstration of the modified algorithm for 10 iterations - 

zoom 
 
 

3.2 Results 
I tested the algorithms on two surfaces: a sphere (3480 triangles) and a 

non-convex model of terrain (1225 triangles). The algorithm works 
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precisely over the sphere. The demonstration for 10 iterations is displayed at 
the figure 4. The relative error is less than 0.0001 after 50 iterations. 

.  
Figure 5a. Demonstration of the modified algorithm on a non-convex 

surface. The algorithms works precisely.  

 
Figure 5b. Demonstration of the modified algorithm on a non-convex 

surface. Right: The relative error is 0.14 
 
The algorithm does not work too accurately on the non-convex model 

in some cases. There is an example where the shortest path was found 
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precisely (figure 5a) and an example where the found shortest path 
distinguishes too much from the exactly shortest path (figure 5b). 

4 Conclusion and future work 
The time-complexity of algorithm is O(kn), where k is the number of chosen 
directions and n the number of triangles. In comparison with the other 
algorithms this algorithm is simple and fast. The main disadvantage of this 
algorithm is that the path does not pass through the second point t exactly. 

 
In the future work I want to improve the algorithm for non-convex 

surfaces. By interconnecting this algorithm with the algorithm of unfolding 
I hope to eliminate the main disadvantage: the shortest path should pass the 
second point exactly. 
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